Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hepatology ; 74(4): 1750-1765, 2021 10.
Article in English | MEDLINE | ID: covidwho-1274697

ABSTRACT

BACKGROUND AND AIMS: We compared risk of acute liver injury and mortality in patients with COVID-19 and current, past, and no HBV infection. APPROACH AND RESULTS: This was a territory-wide retrospective cohort study in Hong Kong. Patients with COVID-19 between January 23, 2020, and January 1, 2021, were identified. Patients with hepatitis C or no HBsAg results were excluded. The primary outcome was mortality. Acute liver injury was defined as alanine aminotransferase or aspartate aminotransferase ≥2 × upper limit of normal (ULN; i.e., 80 U/L), with total bilirubin ≥2 × ULN (i.e., 2.2 mg/dL) and/or international normalized ratio ≥1.7. Of 5,639 patients included, 353 (6.3%) and 359 (6.4%) had current and past HBV infection, respectively. Compared to patients without known HBV exposure, current HBV-infected patients were older and more likely to have cirrhosis. Past HBV-infected patients were the oldest, and more had diabetes and cardiovascular disease. At a median follow-up of 14 (9-20) days, 138 (2.4%) patients died; acute liver injury occurred in 58 (1.2%), 8 (2.3%), and 11 (3.1%) patients with no, current, and past HBV infection, respectively. Acute liver injury (adjusted HR [aHR], 2.45; 95% CI, 1.52-3.96; P < 0.001), but not current (aHR, 1.29; 95% CI, 0.61-2.70; P = 0.507) or past (aHR, 0.90; 95% CI, 0.56-1.46; P = 0.681) HBV infection, was associated with mortality. Use of corticosteroid, antifungal, ribavirin, or lopinavir-ritonavir (adjusted OR [aOR], 2.55-5.63), but not current (aOR, 1.93; 95% CI, 0.88-4.24; P = 0.102) or past (aOR, 1.25; 95% CI, 0.62-2.55; P = 0.533) HBV infection, was associated with acute liver injury. CONCLUSION: Current or past HBV infections were not associated with more liver injury and mortality in COVID-19.


Subject(s)
Acute Lung Injury/epidemiology , COVID-19/mortality , Hepatitis B, Chronic/epidemiology , Acute Lung Injury/blood , Acute Lung Injury/diagnosis , Acute Lung Injury/virology , Adult , Age Factors , Aged , Alanine Transaminase , Aspartate Aminotransferases , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Female , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B virus/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/virology , Hong Kong/epidemiology , Humans , Male , Medical History Taking/statistics & numerical data , Middle Aged , Retrospective Studies , Risk Assessment/statistics & numerical data , Risk Factors
2.
Rheumatology (Oxford) ; 60(9): 4418-4427, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1193773

ABSTRACT

OBJECTIVES: The biomarkers of an immunological dysregulation due to a chronic HBV infection are indeed understudied. If untreated, this condition may evolve into liver impairment co-occurring with extrahepatic involvements. Here, we aim to identify a new panel of biomarkers [including immunoglobulin G (IgG) subclasses, RF, and Free Light Chains (FLCs)] that may be useful and reliable for clinical evaluation of HBV-related cryoglobulinemia. METHODS: We retrospectively analysed clinical data from 44 HBV-positive patients. The patients were stratified (according to the presence/absence of mixed cryoglobulinemia) into two groups: 22 with cryoglobulins (CGs) and 22 without CGs. Samples from 20 healthy blood donors (HDs) were used as negative controls. Serum samples were tested for IgG subclasses, RF (-IgM, -IgG, and -IgA type), and FLCs. RESULTS: We detected a strikingly different distribution of serum IgG subclasses between HDs and HBV-positive patients, together with different RF isotypes; in addition, FLCs were significantly increased in HBV-positive patients compared with HDs, while no significant difference was shown between HBV-positive patients with/without mixed cryoglobulinemia. CONCLUSION: The immune-inflammatory response triggered by HBV may be monitored by a peculiar profile of biomarkers. Our results open a new perspective in the precision medicine era; in these challenging times, they could also be employed to monitor the clinical course of those COVID-19 patients who are at high risk of HBV reactivation due to liver impairment and/or immunosuppressive therapies.


Subject(s)
Biomarkers/blood , COVID-19/immunology , Cryoglobulinemia/immunology , Cryoglobulinemia/virology , Hepatitis B virus/immunology , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2
3.
Clin Immunol ; 227: 108727, 2021 06.
Article in English | MEDLINE | ID: covidwho-1193258

ABSTRACT

With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host Microbial Interactions/immunology , Killer Cells, Natural/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19/blood , Cytomegalovirus/immunology , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , HIV/immunology , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , Hepatitis B/blood , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B virus/immunology , Herpesvirus 4, Human/immunology , Humans , SARS-CoV-2/immunology , Toll-Like Receptors/metabolism
4.
Nature ; 591(7850): 482-487, 2021 03.
Article in English | MEDLINE | ID: covidwho-1049967

ABSTRACT

Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.


Subject(s)
Antibodies, Viral/analysis , Biosensing Techniques/methods , Hepatitis B virus/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/analysis , Troponin I/analysis , Antibodies, Viral/immunology , Biosensing Techniques/standards , Botulinum Toxins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Limit of Detection , Luminescence , Phosphoproteins/immunology , Proto-Oncogene Proteins c-bcl-2/analysis , Receptor, ErbB-2/analysis , Sensitivity and Specificity , Viral Matrix Proteins/immunology
5.
J Viral Hepat ; 28(1): 89-94, 2021 01.
Article in English | MEDLINE | ID: covidwho-793304

ABSTRACT

A significant proportion of patients infected with SARS-CoV-2 develop severe respiratory symptoms due to an excessive immune response. Treatment of this condition may include immunosuppressive therapies, such as IL-6 receptor antagonists and corticosteroids, which pose a risk for patients with active or past hepatitis B virus (HBV) infection. In this prospective cohort study, we analysed the risk of HBV reactivation in patients with severe COVID-19 and resolved HBV infection undergoing immunosuppressive therapy. From 15th March to 30th April 2020, 600 patients with severe COVID-19 were admitted to our hospital and treated with immune modulators. Data regarding HBV infection were available in 484, of whom 69 (14%) were HBsAg negative/anti-HBc positive. For these patients, HBV reactivation prophylaxis with entecavir was strongly recommended. Complete follow-up was available in 61 patients: 72% were male, median age was 67 years, and anti-HBs was >10 IU/mL in 72%. The immunosuppressive drug most used was tocilizumab (72%). Despite HBV prophylaxis recommendation, 38 (62%) patients received entecavir and 23 (38%) did not. Baseline features of both groups were similar. At follow-up, we found no cases of HBsAg seroreversion and only 2 (3%) patients (no prophylaxis group) had detectable serum HBV-DNA (<15 IU/mL). Both were anti-HBs negative and had normal aminotransferase levels. Our data show that the risk of HBV reactivation in patients with severe COVID-19 and resolved HBV infection undergoing immunosuppressive treatment is low. However, if a systematic follow-up after hospital discharge is unfeasible in patients without anti-HBs, a short course of antiviral prophylaxis may be a safe option.


Subject(s)
COVID-19 Drug Treatment , Hepatitis B/virology , Immunosuppressive Agents/therapeutic use , Virus Activation/drug effects , Aged , Antiviral Agents/therapeutic use , COVID-19/complications , DNA, Viral/blood , Female , Hepatitis B/complications , Hepatitis B/prevention & control , Hepatitis B Antibodies/blood , Hepatitis B Core Antigens/immunology , Hepatitis B Surface Antigens/blood , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Humans , Male , Middle Aged , Prospective Studies , Risk , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL